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Abstract 

Background:  Pharmacogenomics describes the link between gene variations (polymorphisms) and drug responses. 
In view of the implementation of precision medicine in personalized healthcare, pharmacogenetic tests have recently 
been introduced in the clinical practice. However, the translational aspects of such tests have been limited due to the 
lack of robust population-based evidence.

Materials:  In this paper we present a novel pharmacogenetic panel (iDNA Genomics-PGx–CNS or PGx–CNS), consist-
ing of 24 single nucleotide polymorphisms (SNPs) on 13 genes involved in the signaling or/and the metabolism of 
28 approved drugs currently administered to treat diseases of the Central Nervous System (CNS). We have tested the 
PGx–CNS panel on 501 patient-derived DNA samples from a southeastern European population and applied biosta-
tistical analyses on the pharmacogenetic associations involving drug selection, dosing and the risk of adverse drug 
events (ADEs).

Results:  Results reveal the occurrences of each SNP in the sample and a strong correlation with the European popu-
lation. Nonlinear principal component analysis strongly indicates co-occurrences of certain variants. The metaboli-
zation efficiency (poor, intermediate, extensive, ultra-rapid) and the frequency of clinical useful pharmacogenetic, 
associations in the population (drug relevance), are also described, along with four exemplar clinical cases illustrating 
the strong potential of the PGx–CNS panel, as a companion diagnostic assay. It is noted that pharmacogenetic asso-
ciations involving copy number variations (CNVs) or the HLA gene were not included in this analysis.

Conclusions:  Overall, results illustrate that the PGx–CNS panel is a valuable tool supporting therapeutic medical 
decisions, urging its broad clinical implementation.
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Background
The variability in drug response with respect to dosing 
efficacy and planning, as well as potentially controver-
sial drug reactions, have long been considered as lim-
iting factors to the overall improvement of patients’ 
well-being in many medical domains including psy-
chiatry and neurology [1–6]. It has been long known 
that the response and efficacy of a drug can be influ-
enced by genes and genetic polymorphisms involved in 
signaling mechanisms linked to the metabolization of 
the drug [7–9], and by specific DNA variations, which 
may impact the activity of encoded proteins and the 
mechanisms of action of a drug. The study of genes 
and genetic polymorphisms that influence the vari-
ability in drug response and efficacy is known as Phar-
macogenetic and Pharmacogenomic (PGx) analysis. 
Related studies employ methodologies from the fields 
of molecular, cellular biology and biochemistry, and 
include clinical statistical analyses on available genomic 
data, aiming to identify how specific genetic varia-
tions entailing altered protein structural features and 
activities may lead to diverse drug related phenotypic 
outcomes.

Even though the PGx research is ongoing and novel 
evidence-based findings are being constantly improved, 
enriched and accumulated from genomic and clinical 
studies [10–16], current evidence on sets of important 
pharmacogenes show that gene-drug associations can be 
used as clinically valuable predictive PGx markers [10]. 
The clinical implementation of PGx has been facilitated 
by the improvement of molecular techniques and meth-
odologies of high sensitivity and specificity, such as geno-
typing by real time PCR, which can determine a panel of 
targeted variations on the DNA, in a cost-efficient and 
time-efficient manner. By exploiting the available PGx 
data and correlating this information with a patient’s 
genetic profile, tailored and personalized drug treatments 
can be determined. Thus, the optimization and personal-
ization of drug treatments by exploiting the available vast 
genomic and PGx information is more promising than 
ever before and rapidly becomes integrated into main-
stream clinical care strategies [17, 18]. However, selecting 
a set of gene-drug associations from the vast pool of the 
available genomic and PGx data for clinical implementa-
tion, remains a challenging task.

The identification of variants affecting gene-drug asso-
ciations is well-documented in the literature and several 
knowledge bases and databases have been assembled to 
resource clinical information including clinically action-
able gene-drug associations and genotype–phenotype 
relationships, as well as clinical guidelines and drug 
labels. A fine example is the PharmGKB (PharmG Knowl-
edge Base) [10], which collects, curates and disseminates 

published findings and bibliographic evidence supporting 
associations and relationships between genetic variations 
and drug responses.

The selection of clinically valuable PGx associa-
tions, destined to be used as companion diagnostics, 
is a demanding task that requires two main criteria: (a) 
Each gene to be selected due to its participation/role in 
cell signaling pathways linked to the metabolization or 
action mechanism of a given drug; and (b) Each clinical 
annotation and gene variant-drug association to be well-
documented in several studies describing positive versus 
negative results, p-values and study sizes [19], thus pro-
viding with an adequate level of validity. An additional 
selection factor for the development of robust minimal 
PGx panels is the occurrence of each variation in the 
population. Variations of high or intermediate occur-
rences are preferred over variations of extremely rare 
occurrences. Other databases similarly collect and curate 
variant-drug associations (ie CPIC [7], SNPedia [20], 
Drugbank [21]). The selection is based according to the 
targeted disease/disorder and the drugs of interest.

Over 150 drugs with PGx information related to drug 
safety are listed on the United States Food and Drug 
Administration (US FDA); approximately 15% of which 
fall under the medical field of psychiatry [22]. Psychiatry 
and Neurology involve conditions like depression, bipo-
lar, schizophrenia, binge eating and more disorders of the 
central nervous system (CNS) [23], also comprising a set 
of complicated disorders affecting the mood, the memory 
and the mobility, including epilepsy, multiple sclerosis 
and neurodegenerative disorders [24]. Pharmacologic 
intervention employs several drugs for the treatment of 
CNS disorders to target specific enzymes, proteins and 
pathways implicated in the disease. For example, drugs 
for the management of depression (i.e. escitalopram, ser-
taline, venlafaxine, and duloxetine), are used to modify 
receptor interactions (serotonin and norepinephrine 
re-uptake inhibitors) [25, 26]. Currently known mark-
ers of enhanced gene-drug and variant-drug associa-
tions for CNS drugs, encompass enzyme-coding genes 
like the cytochrome P450 family (CYP) and the UGT2B7 
(catalyst/metabolic activity); as well as proteins involved 
in signal transduction, like UGT2B7, EPHX1, FKBP5, 
ANKK1/DRD2, DRD3, HTR2C, MC4R, GRIK1 and 
SCN1A (protein channels, receptors, post-translational 
modifications, linked to both drug dosage and ADEs) 
[10]. In particular, the cytochrome P450 family, compris-
ing the CYP2C9, CYP2C19 and CYP2D6 enzymes, is 
known to catalyze the metabolization of some 50% of all 
approved drugs, including several drugs used in the treat-
ment of CNS diseases. Their star allelic forms are linked 
to drug-dependent altered metabolization efficiency [27]. 
Most gene-drug associations are influenced by single 
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nucleotide polymorphisms (SNPs) on the gene and a set 
of unique SNPs can be used to address a gene-drug asso-
ciation with phenotypical/functional implications. As an 
example, the rs17782313 variant of the Melanocortin 4 
receptor gene (MC4R) is directly linked to an increased 
risk of elevated body weight during treatment with que-
tiapine [28, 29]. However, in the case of the CYP family, 
PGx associations have been studied between the star 
allelic forms rather than unique SNP targets. The star 
allelic forms can be determined indirectly, via the identifi-
cation of a combination of SNPs specifically occurring in 
a unique star allele form. As an example, the CYP2C9 star 
alleles *2 and *3 can be identified by the SNP rs1799853 
and rs1057910, respectively. The homozygous CYP2C9*1 
is an extensive drug metabolizer; while homozygous 
CYP2C9*2 and *3 are considered as poor metabolizers 
[10, 30, 31]. A heterozygous genotype of CYP2C9*1/*2 
or *1/*3 results in an intermediate metabolization activ-
ity of the anti-epileptics valproic acid and phenytoin, 
indicating a linear gene dose effect [32, 33]. Similarly, the 
SNPs rs4244285 and rs4986893 indicate the CYP2C19 
star alleles *2 and *3, respectively; while a combination 
of the SNPs rs28399504 and rs12248560 is required for 
the determination of the star alleles *4 and *17 [10]. In 
the case of CYP2D6, the SNPs rs35742686, rs5030655, 
rs5030656 and rs28371725, determine the star alleles *3, 
*6, *9 and *41, respectively; while for the determination 
between *4 and *10, the rs3892097 and rs1065852 are 
required. More information can be found on the respec-
tive allele functionality tables of PharmGKB.1,2,3

In this paper, we present a novel PGx panel of poly-
morphic targets, used as markers for the determination 
of personalized drug treatments against disorders of the 
CNS. We describe the design and selection criteria of the 
targets of the PGx-CNS panel, and provide the assess-
ment of the linked PGx associations, analysing genotypic 
and PGx results from 501 CNS patient-derived samples 
from southeastern Europe (Greece). In addition, we pre-
sent statistical evidence on population occurrences of 
each SNP and we analyse the frequencies of clinically 
useful pharacogenetic conclusions, such as the metabo-
lization activities. Moreover, we provide four exemplar 
clinical cases illustrating the strong potential of the PGx–
CNS panel, as a companion diagnostic assay. Overall, our 
results illustrate that the PGx–CNS panel is a valuable 
tool supporting therapeutic medical decisions, urging its 
broad clinical implementation.

Materials and methods
Selection of clinically relevant PGx targets
For the construction of the proposed PGx–CNS panel, 
twenty-eight approved drugs used for the treatment of 
diseases of the CNS were selected on the basis of their 
availability and usage in the European market (Additional 
file  1). Each drug was used for literature search/mining 
(PubMed) and knowledge-base (KB) mining on several 
genomic platforms including the PharmGKB [10], for 
the identification of known evidence-based gene-drug 
and variant-drug associations. Subsequently, a subset of 
the identified targets was selected based on bibliographic 
findings and drug specificity (Additional file 1). Twenty-
four targets were selected and introduced to an in-house 
database, to constitute the PGx–CNS panel, including the 
variant-drug PGx associations derived by curated knowl-
edge-base of PharmGKB [10]. This set of information was 
used to form an in-house PGx–CNS database comprising 
the respective PGx associations. The selected targeted 
genes encode several types of functional proteins, vary-
ing from receptors, enzymes, ion channels, and signal 
transducers (Additional file  2). The assessment and the 
evaluation of the derived PGx information is described in 
the Results section.

Collection of samples—Patients
For the assessment of the PGx–CNS panel human buc-
cal cells were collected from 501 individuals of random 
age and sex. All individuals are patients diagnosed with 
one or more conditions in the spectrum of the central 
nervous system and require medical interventions and 
prescription with antipsychotic, anti-depressants, anti-
epileptic or other drugs analysed here. The collection 
was performed using Forensic swabs L, DNA-free, ETO-
sterilized (Sarstedt, Germany). Each sample was diluted 
in 500 μl of PBS. The DNA from buccal cell lysates was 
purified with Purelink genomic DNA mini kit (Invit-
rogen by Thermo Fischer Scientific). Each DNA sample 
was quantified by NanoDrop One Spectrophotometer 
(Thermo Fischer Scientific). The quality control required 
all samples to be above 30 ng/μl with an A260/A280 ratio 
of around ~ 1.8 and an A260/A230 ratio within the range 
of 2.0–2.2. Samples were stored at − 20 °C until further 
use.

Genotyping
Genotyping on 501 samples was performed using the 
TaqMan Drug Metabolism and Custom Genotyping 
Assays at the QuantStudio™ 12  K Flex Real-Time PCR 
System (Applied Biosystems by Life Technologies). The 
PGx–CNS panel included 24 targets. The correspond-
ing sets of primers and probes were purchased by Ther-
moFischer Scientific. Probe IDs and corresponding genes 

1  www.​pharm​gkb.​org/​page/​cyp2d​6RefM​ateri​als.
2  www.​pharm​gkb.​org/​page/​cyp2c​9RefM​ateri​als.
3  www.​pharm​gkb.​org/​page/​cyp2c​19Ref​Mater​ials.

http://www.pharmgkb.org/page/cyp2d6RefMaterials
http://www.pharmgkb.org/page/cyp2c9RefMaterials
http://www.pharmgkb.org/page/cyp2c19RefMaterials
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and SNPs are listed in Additional file 1. The genotyping 
method was performed following the manufacturer’s 
instructions. Briefly, 25  ng genomic DNA was used in 
5 μL reaction volume, including 2.5 μl TaqMan Genotyp-
ing Master Mix (Applied Biosystems) and 2.5 μl genomic 
DNA that was dispensed to each well of 384 well plates. 
The temperature protocol (95  °C for 15′′ and 60  °C for 
85′ʹ for 60 cycles) was performed in accordance with 
the manufacturer’s instructions. Negative controls did 
not include DNA and yielded no amplification signal. 
Raw data were collected from the instrument and ana-
lyzed with the QuantStudio 12 K Flex software and the 
TaqMan Express software, by the method of allelic dis-
crimination. The genotypic data were used for the bioin-
formatic variant analysis and PGx interpretation.

Statistical and bioinformatic analysis
The genotyping results were used for the statistical anal-
yses describing the occurrences and their comparison 
to the frequencies in the population groups: European 
(commonly CEU: 180 samples of Northern and West-
ern European ancestry); African (commonly YRI: 180 
samples of Yoruba in Ibadan, Nigeria) and East Asian 
(commonly CHB: 90 samples of Han Chinese in Beijing, 
China); obtained from the publicly available genomic 
database published in the National Center for Biotech-
nology Information (NCBI) (dbSNP, www.​ncbi.​nlm.​nih.​
gov/​snp/ and SNPedia, www.​snped​ia.​com/) [34]. Fre-
quency values are available on https://​www.​ncbi.​nlm.​nih.​
gov/​snp/ and https://​www.​snped​ia.​com/: [34, 35]. The 
software GraphPad Prism was used for the calculation of 
the averages, error, and standard deviations. Additionally, 
the association between population group and gene vari-
ant frequencies was statistically evaluated for each of the 
24 variants, through a series of Pearson’s chi-square (χ2) 
tests [36]. For each variant, three pairwise comparisons 
were performed (Table 1, Additional file 3). The strength 
of each association was determined based on the Cram-
er’s V coefficient [37]. Given that all tests involved two 
degrees of freedom, the resulting coefficients were inter-
preted as weak (0.7–0.20), moderate (0.21–0.34), or 
strong (0.35 or above) [37]. The Pearson’s Chi-square test 
assumes that at least 80% of the expected counts are five 
or more, while none of the individual expected counts 
are zero [36, 38]. In cases where these sampling adequacy 
assumptions were violated (i.e., 15 of the 72 comparisons 
performed), we further confirmed the significance of the 
findings using the Fisher’s exact test of independence, 
in agreement with standard statistical recommenda-
tions. Given that multiple comparisons were performed 
(Table 1), the resulting p-values were corrected using the 
Holm-Bonferroni procedure [39].

To investigate multivariate patterns of variation 
among gene variants within the PGx–CNS sample (501 
individuals), a nonlinear principal component analysis 
(PCA) was conducted using the 24 gene variants as var-
iables [40–42]. Prior to this procedure, these categorical 
variables were binarized and subjected to the optimal 
scaling procedure. The output of this analysis was iden-
tical to that produced by a multiple correspondence 
analysis on the same data [43]. The number of principal 
components plotted was decided based on the standard 
scree-plot procedure [44]. All statistical analyses were 
performed in the IBM SPSS software package (IBM 
Inc., Armonk, NY; version 24 for Windows).

Table 1  Variant frequency associations and p-values

Statistical results of the Chi-square pairwise comparisons of gene variant 
frequencies between the sample of this study (PGx–CNS, SEC) and the following 
populations: European CEU (commonly CEU: Northern and Western European 
ancestry); African, AFR (commonly YRI: Yoruba in Ibadan, Nigeria) and East Asian, 
CHB (commonly CHB: Han Chinese in Beijing, China). The presented output for 
each test includes its p-value and the corresponding Cramer’s V coefficient (in 
parenthesis). The comparisons for which the Fisher’s exact test of independence 
was additionally used (see “Materials and methods”) are indicated with an 
asterisk. The p-values in bold are those that remained significant (p-value < 0.01) 
after adjustment using the Holm-Bonferroni procedure. The degrees of freedom 
for all tests were two. Results show a very high correlation of variant frequencies 
in PGx–CNS and European CEU population, as compared to African and Chinese 
populations.

Gene variants PGx–CNS-CEU PGx–CNS-AFR PGx–CNS-CHB

rs1799853 0.09 (0.08) < 0.01 (0.23) 0.11 (0.09)

rs1057910 0.09 (0.08) < 0.01 (0.22) 0.11 (0.09)

rs4244285 0.02 (0.11) 0.31 (0.06) < 0.01 (0.22) 
rs4986893 0.54 (0.03)* 0.60 (0.01) < 0.01 (0.27)*
rs1051740 0.46 (0.05) < 0.01 (0.27) 0.01 (0.13)

rs1065852 0.01 (0.11) < 0.01 (0.14) < 0.01 (0.35) 
rs12248560 0.01 (0.11) 0.03 (0.10) < 0.01 (0.26) 
rs1414334 0.30 (0.06) < 0.01 (0.48) 0.01 (0.15)

rs17782313 0.06 (0.09) 0.12 (0.08) 0.39 (0.06)

rs1799978 0.55 (0.08)* < 0.01 (0.15) < 0.01 (0.17) 
rs1800497 0.22 (0.07) < 0.01 (0.36) < 0.01 (0.32) 
rs2234922 0.74 (0.03) < 0.01 (0.27) < 0.01 (0.14)

rs2832407 0.03 (0.10) < 0.01 (0.73) < 0.01 (0.25) 
rs28371725 0.35 (0.06) < 0.01 (0.22) 0.01 (0.13)

rs28399504 0.12 (0.04)* 0.69 (0.05)* > 0.99 (0.04)*

rs35742686 0.17 (0.08)* 0.03 (0.09)* 0.13 (0.08)*

rs3812718 0.41 (0.05) < 0.01 (0.28) 0.75 (0.03)

rs3892097 0.40 (0.05) < 0.01 (0.18) < 0.01 (0.24) 
rs4713916 0.34 (0.06) < 0.01 (0.33) 0.08 (0.09)

rs489693 0.01 (0.13) < 0.01 (0.32) < 0.01 (0.14)

rs5030655 0.59 (0.01)* 0.59 (0.01)* 0.44 (0.04)

rs5030656 0.36 (0.03)* 0.59 (0.01)* 0.44 (0.04)*

rs7668258 0.43 (0.05) < 0.01 (0.31) < 0.01 (0.14)*

rs963468 0.75 (0.03) < 0.01 (0.49) 0.60 (0.04)

http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
http://www.snpedia.com/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.snpedia.com/
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Results
Development of the iDNA PGx–CNS panel: Assessment 
and evaluation of the PGx targets
A robust in-house database (PGx–CNS database) for 
the pharmacogenetic analysis of multiple PGx associa-
tions was developed for each drug (Additional file 1, 2). 
Each association was selected on the basis of the avail-
able bibliographical evidence of clinical value, in line with 
the curation and validation method of the PharmGKB. 
The PGx–CNS database includes (a) the three possible 
combinations of the inherited genotypic variations for 
each target, i.e. homozygous wild type, heterozygous and 
homozygous mutated alleles; and (b) the PGx interpre-
tation and advisory claim of each variant combination-
drug association, for each drug. The available derived 
PGx information varies for each drug and depending on 
each gene–drug association, it comprises one or more 
of the following advisory categories: ‘Efficacy’, ‘Metabo-
lism’, ‘Pharmacokinetics (PK)’ and ‘Toxicity’, indicating 
interpretations on drug response; clearance, metaboliza-
tion and resistance; dosage; ADEs (miscellaneous); ADE 
(weight gain); ADE (metabolic syndrome); ADE (tardive 
dyskinesia); ADE (hypertriglyceridemia); ADE (hyper-
prolactinemia), ADE (gastroenteric) and ADE (stroke) 
(Additional file 1).

A bioinformatics platform was developed for the 
analysis of raw genotypic data from patients, their map-
ping to the PGx targets residing in the in-house data-
base, the assignment of the gene variant-drug PGx 
information, and the report building and generation. 
The platform implements an algorithm which infers 
interpretations of the PGx results and provides as out-
put a pdf report that contains all required information 
for clinical decision support, including all the variant-
drug PGx information and respective PGx clinical 
advices as mentioned above. Essentially the algorithm 
makes use of evidence-based and published biological 
knowledge to assign a score to each drug of the PGx–
CNS panel while considering the genetic variations 
found in the patients’ genotype. Based on the inferred 
score, drugs are reported to have a low, medium or 
high genotype-drug interaction. For drugs of high or 
medium genotype-drug interaction, clinical advices 
guiding the medical decisions, are provided. Drugs of 
low genotype-drug interaction are recommended to be 
administered according to the instructions provided in 
the drug label. The categorization considers the clini-
cal significance scores of variant-drug associations 
and the significance scores of the biological function 
of each associated gene. More specifically, the signifi-
cance scores of variant-drug associations are derived 

from the PharmGKB (can be 1A, 2A, 2B, 3) as shown 
in Additional file  1 [10]. An annotated variant-drug 
combination of Level 1A corresponds to a CPIC [45] 
or medical society-endorsed PGx guideline, or is found 
implemented at the Pharmacogenomics Research Net-
work (PGRN) site, or in another major health system. 
An annotation of Level 1B refers to the preponderance 
of evidence, replicated in more than one cohort with 
significant p-values, and with a strong effect size. An 
annotation of Level 2A qualifies a VIP (very important 
pharmacogene) of functional significance, as defined by 
PharmGKB [10]. An annotation of Level 2B refers to 
moderately replicated evidence of association. A Level 
3 annotation is based on a single significant (not yet 
replicated) study or multiple studies but lacking clear 
and conclusive evidence of an association. Finally, Level 
4 annotations, based on a case report or a non-signif-
icant study, are not included in the panel presented 
here. In addition, those targets having guideline anno-
tations by the FDA: US Food & Drug Administration, 
according to the FDA’s “Table of Pharmacogenomic 
Biomarkers in Drug Labels’’ found on PharmGKB [10], 
are also noted (Additional file  1). The significance of 
the associated gene function is reflected by a prioritiza-
tion grouping (PG) of the related genes that considers 
the biochemical significance of each encoded protein 
in its functional association with the drugs (metaboli-
zation or other effects). The prioritisation grouping is 
the following: Group A (high priority, score 3, including 
metabolising enzymes): CYP2C9, CYP2C19, CYP2D6, 
UGT2B7; Group B (intermediate priority, score 2, 
including signaling proteins): EPHX1, FKBP5, ANKK1/
DRD2, DRD2, DRD3, HTR2C; Group C (limited prior-
ity, score 1, including additional signalling proteins): 
MC4R, GRIK1, SCN1A (Additional file 2).

Each genotype-drug association has been manually 
assigned to either ‘low, medium or high’ genotype-drug 
interaction categories, corresponding to ‘minimum, 
intermediate or enhanced’ PGx effect. The imple-
mented algorithm takes as input the patient’s genotype 
and calculates a drug score per category as the sum 
of the variant-drug significance and gene significance 
scores. More specifically, let c denote the genotype-
drug interaction category which can be one of Low 
(L), Medium (M), High (H), D the set of genotype-
drug associations relevant for the category examined, 
EL their PharmGKB evidence level, G the set of genes 
associated with the relevant genotypes and PG the pri-
oritization group of the gene, assigned as mentioned 
above. Then, a drug is assigned to the category with the 
highest calculated score as follows:
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In other words, the drug is assigned to the category (L, 
M or H) for which the total sum of the sum of the cat-
egory related evidence levels and the sum of gene prior-
itization scores is maximized. Furthermore, to support 
the treatment decision by the clinical doctor, genotype-
drug associations belonging to the categories of medium 
and high interaction are accompanied with a brief clini-
cal advice. In total nine clinical advices have been defined 
and are provided as part of the PGx report.

In conclusion, the PGx–CNS constitutes an exhaus-
tive set of clinically valuable markers and a prioritization 
analysis method for providing a robust PGx information 
on the selected 28 drugs, adequate for clinical usage.

Validation samples and patient characteristics
Five hundred and one samples were collected from 
southeastern European individuals diagnosed with one 
or more conditions related to the CNS. The 501 sam-
ples constitute of 20 samples of 0–20  years old (4%); 
164 samples of 21–40  years old (32.7%); 183 samples 
of 41–60  years old (36.5%); 112 samples of 61–80  years 
old (22.4%); and 22 samples of 81–100 years old (4.4%), 
(Fig.  1a; Additional file  4); corresponding to 226 males 
(45.1%) and 275 (54.9%) females (Fig.  1b; Additional 
file 4).

Genotyping using the SNP TaqMan Real‑time PCR 
method, provides with a quick and robust targeted 
determination of SNPs
All 501 patient-derived genomic DNA samples were 
genotyped with the SNP TaqMan Real-time PCR assay 
(Table 1; Additional file 3) showed an increased amplifi-
cation efficiency, as the mean Ct for most of the targets 
was around 25; while the assay C_32407232_50 gave 
an amplification product at a Ct of 35, without affect-
ing the final genotyping result. In order to confirm the 
validity and robustness of the followed methodology, 
we performed a comparative population analysis on 
the occurrences of each variant in different populations 
(Table 1; Additional file 3). Three populations were used 
for a comparative analysis with the 501 samples tested 
here, as shown in Table 1 (Additional file 3). The statis-
tical results on 501 Southeastern European Caucasian 
(SEC) samples (PGx–CNS), show that the occurrences 
of each of the 24 variants are significantly similar to the 
population of European ancestry (CEU), compared to 
African (YRI) and Asian (CHB) populations (Table  1; 
Additional file  3). Indeed, after adjusting p-values 
using the Holm-Bonferroni sequential technique [39], 

drugcategory = argmaxc∈{L,M,H}
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the differences between PGx–CNS variant frequencies 
and CEU (European) were not found to be statistically 
significant (i.e., p-value > 0.05). However, 15 out of 24 
differences between PGx–CNS and the African sam-
ple (YRI) were significant (p-value < 0.001, ***); both 
before and after adjusting p-values [39]. Based on the 
Cramer’s V coefficient, these differences were either 
moderate (V = 0.21–0.34) or strong (V ≥ 0.35) [37]. The 
strongest associations were observed for gene variants 
rs2832407 (0.73), rs963468 (0.49), and rs1414334 (0.48); 
while the variants not presenting significant results 
were rs4244285, rs4986893, rs17782313, rs28399504, 
rs35642686, rs5030655, and rs5030656. Comparing the 
PGx–CNS—Asian (CHB) samples, 14 out of 24 differ-
ences were significant (p < 0.01), eight of which also 

Fig. 1  Pie chart of composition of 501 patient samples from 
southern Europe, in respect to the following parameters: a age factor 
in years (y) (0–20; 21–40; 41–60; 61–80; 81–100); and b sex factor 
(male or female)
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remained significant after Holm-Bonferoni adjustment. 
The strongest differences were for rs1065852 (0.35) and 
rs1800497 (0.32) (Table 1; Additional file 3). In conclu-
sion, the results of the employed genotyping method 
are consistent with population studies and indicate that 
the variant frequencies of SEC individuals analysed 
here are statistically consistent to the European popula-
tion; thus validating the employed analysis method.

In order to assess possible association/correlation 
profiles within the PGx–CNS sample, we ran a nonlin-
ear PCA [40, 42] on the 24 pharmacogenetic variants 
(Fig. 2; Additional file 5), without assuming any group-
ing criterion for each of the 501 individuals. The scree-
plot procedure recommended focusing on the first four 
PCs, which represent a partial amount of total sample 
variance (28.01%; Additional file  5). Results show that 
the combinations of the identified polymorphisms 
reveal the presence of four clusters in the sample, one 
for each direction of PC1 and PC2 (Fig. 2a). Based on 
the factor loadings (Additional file 5), individuals with 
positive scores on PC1 (9.1% of sample variance) tend 
to share the co-occurrence in genes encoding UGT2B7 
(rs7668258) and CYP2D6*41 (rs28371725), combined 
with the absence of MC4R (rs17782313, rs489693) 
and CYP2D6*4,*10 (rs3892097, rs1065852). Reversely, 
samples with negative PC1 values tend to reflect the 
co-occurrence of genes MC4R (rs17782313, rs489693) 
and CYP2D6*4,*10 (rs3892097, rs1065852), in combi-
nation with the absence of UGT2B7 (rs7668258) and 
CYP2D6*41 (rs28371725). On the vertical axis PC2 
(7.1%), individuals with positive values show a ten-
dency to present MC4R (rs17782313 and rs489693) 
and the co-occurrence of genes encoding CYP2D6*4 
(rs3892097) and CYP2D6*10 (rs1065852). The oppo-
site tendency is observed in individuals with negative 
PC2 scores. On both PCs (16.5% of sample variance 
explained), the two variations of MC4R (rs17782313, 
rs489693) co-occur with an increased frequency for 
most individuals, indicating that they are interlinked 
(Fig.  2a). The distribution of specimen values on the 
remaining PCs (PC3 and PC4; 11.6% of total sample 
variance) reveals the presence of two specimens with 
extreme scores (i.e., individuals with unusual combina-
tions; Fig. 2b; Additional file 5).

Relevance of pharmacogenetic associations 
for CNS drugs: bioinformatic analysis and PGx 
interpretation
Genotypic results targeting the 24 variants from 501 sam-
ples, were analysed by the developed iDNA-PGx–CNS 
bioinformatic platform, which allows the automation of 
the PGx interpretation procedure from raw genotypic 
data. The analysis involves the assignment of the drugs 
comprising the PGx–CNS panel to either low, medium 
or high genotype-drug interaction categories per patient, 
corresponding to ‘minimum, intermediate or enhanced’ 
PGx effect. Results showed the distribution of the metab-
olisation activity of the cytochromes (CYP2C9, CYP2C19 
and CYP2D6), categorised as ultra-rapid, rapid/extensive, 
intermediate or poor metabolisers (Fig.  3; Additional 
file 6). Homozygote star alleles *2 and *3 of CYP2C9 and 
of CYP2C19 or their combination, were considered as 
poor metabolisers, while heterozygotic combinations 
of *1 or *17 are considered as intermediate metabolis-
ers. The *17 of CYP2C19 was considered as an ultrarapid 
metabolizer [30, 46] (Fig.  3a). The allelic combinations 
*4/*10 and *4/*41, *1/*9, *1/*10, *1/*3, *1/*6, *3/*41, *3/*9 
of CYP2D6, were considered as intermediate metabo-
lisers, while the *3/*3, *3/*4, *4/*4, as poor metaboliz-
ers. The combinations *1/*1, *1/*4, *1/*41 and *41/*41 
were considered as extensive metabolisers [46] (Fig. 3a). 
Results also showed that for CYP2C9, 306 samples (61%) 
indicate rapid/extensive metabolisers; 166 (33%) indi-
cate intermediate; and 29 (6%) indicate poor metabolis-
ers (Fig. 3b). For CYP2C19, the values are 201 (40%); 123 
(25%) and 10 (2%), respectively, while 167 (33%) are ultra 
rapid metabolisers (Fig.  3c). For CYPD6, the values are 
313 (62%); 78 (16%) and 110 (22%) respectively (Fig. 3d). 
Overall, results indicate that 40% to 60% of the tested 
patients carry at least one CYP gene with altered metabo-
lising efficiency, with valuable PGx information.

(See figure on next page.)
Fig. 2  Nonlinear principal component analysis (PCA) on 24 gene variants used as variables, to investigate multivariate patterns of variation among 
the gene variants within the PGx–CNS sample (501 individuals). a PC1,2 (representing a partial amount of total sample variance of 28.01%) showed 
correlations among gene variants, distinctively forming four groups of individuals. b PC3,4 representing a partial amount of total sample variance of 
11.6%, revealed the presence of two specimens with extreme scores (outliers)



Page 8 of 17Bothos et al. J Transl Med          (2021) 19:151 



Page 9 of 17Bothos et al. J Transl Med          (2021) 19:151 	

In order to identify the PGx associations with 
increased occurrences (N = 501), we performed a sta-
tistical analysis of the PGx information deriving from 
the gene-drug associations (Fig.  4a; Additional file  4). 
Results show a variation in the PGx associations, linked 
to clinically relevant information that may be used in 
medical decision. Overall, a subset of the targeted 28 
drugs may be proposed as statistically more relevant to 

the SEC population, as the frequency of polymorphisms 
indicating ‘therapeutically actionable PGx associa-
tions’, for which genetic testing is recommended, is high 
(Fig. 4). In fact, more than 70% of the samples (patients) 
correspond to enhanced gene-drug interactions, for 
clozapine and olanzapine (Fig.  4b), and intermediate 
gene-drug interactions for the drugs escitalopram, cit-
alopram, fluoxetine, carbamazepine and lamotrigine 
(Fig. 4c). On the contrary, the following drugs exhibited 
minimum gene-drug interactions at a high percentage 

Alleles Samples 
(N)

Metabolising 
activity

CYP2C9

*1/*1 306 extensive
*1/*2 100 intermediate
*1/*3 66 intermediate
*2/*2 10 poor
*2/*3 11 poor
*3/*3 8 poor

CYP2C19

*1/*1 201 extensive
*1/*17 143 ultra-rapid
*1/*3 1 intermediate
*2 23 intermediate

*1/*2 91 intermediate
*2/*2 9 poor
*2/*17 4 intermediate
*4 4 intermediate

*4/*4 1 poor
*17/*17 24 ultra-rapid

CYP2D6

*1/*1 219 extensive
*1/*10 4 intermediate
*1/*3 12 intermediate
*1/*4 2 extensive
*1/*41 83 extensive
*1/*6 5 intermediate
*1/*9 2 intermediate
*10 19 intermediate
*3/*3 1 poor
*3/*4 2 poor
*3/*41 3 intermediate
*3/*9 2 intermediate
*4 81 poor

*4/*10 27 intermediate
*4/*4 26 poor
*4/*41 2 intermediate
*41 1 extensive

*41/*41 8 extensive
*10/*10 2 intermediate

a b

d

c

Fig. 3  Analysis of the metabolisation activity of the cytochromes on 501 patients. a Reference table listing the categorisation of the allelic forms 
of each gene with the expected metabolisation efficiency as in ‘ultra-rapid’,’extensive’, ‘intermediate’ and ‘poor’. b, c, d Pie chart of the percentile 
distribution of the metabolising activity of CYP2C9 (b), CYP2C19 (c) and CYP2D6 (d). Results indicate that 40% to 60% of patients carry at least one 
CYP gene with altered metabolising efficiency
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Fig. 4  Statistical analysis of the drugs associated in gene-drug interactions and PGx information, on 501 patients. Results are indicative of the 
drug relevance in the sample, based on the frequencies of gene-drug interactions, in the southeastern European population. a Frequency % of 
gene-drug interactions per drug, deriving from statistical analysis on 501 samples. The deviation bars denote the variations between male and 
female samples. White: minimum gene-drug interaction; light grey: intermediate gene-drug interaction and dark grey: enhanced gene-drug 
interaction. b Frequency % of drugs exhibiting enhanced gene-drug interactions (20–100%). c Frequency % of drugs exhibiting intermediate 
gene-drug interactions (20–100%). d Frequency % of drugs exhibiting minimum gene-drug interactions (20–100%)
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(> 70%): acetylsalicylic acid, duloxetine, amisulpride, 
quetiapine, risperidone, aripiprazole, haloperidol, pali-
peridone and ziprasidone (Fig. 4d). This indicates a high 
occurrence of PGx associations for these drugs and an 
increased relevance of a genetic test preceding the med-
ical therapeutic decision.

Clinical evidence
The PGx analysis is a crucial medical tool in the hands of 
any clinician in order to help patients get more effective 
and safer treatments while avoiding the “trial and error” 
strategy. Here we describe four cases, provided as indica-
tive examples of patients whose treatment was modified 
by the physician, on the basis of their PGx–CNS results.

Case a: pervasive developmental disorder 
not otherwise specified
The first case is a 19-year- old Caucasian male with a 
medical history of pervasive developmental disorder not 
otherwise specified (ICD-10-CM Code F84.9).4 Dur-
ing the last two years he took several drug combinations 
(mostly antipsychotics and mood stabilizers) to control 
hostility, aggressiveness and psychomotor anxiety with 
poor effectiveness. The PGx–CNS analysis gave inter-
esting information regarding the use of psychotropic 
medications. The DRD2 gene (rs1799978, TT) is corre-
lated with good response to risperidone treatment; and 
the ANKK1/DRD2 (rs1800497, GG) is correlated with 
reduced risk for hyperprolactinemia and weight gain but 
increased possibility for tardive dyskinesia. The CYP2C19 
gene (rs4244285, AA indicating the *2/*2 genotype) 
is correlated with very slow metabolizing activity for 
amitriptyline, citalopram, escitalopram and sertraline. 
These antidepressants possibly require small doses and 
slow titration in this patient. In line with the PGx–CNS 
results, the patient subsequently received a treatment 
with olanzapine (10 mg/day), zuclopenthixol (20 mg/day) 
and diazepam (10 mg/day) and after 4 weeks, responded 
well. Aggression and anxiety levels were decreased, and 
the patient felt better. No serious adverse effects have 
been reported.

Case b: paranoid schizophrenia
The second case is a 30-year old Caucasian female with a 
medical history of paranoid schizophrenia (ICD-10-CM 
Code F20.0)5 Previous antipsychotics treatments were 
correlated with adverse effects (hyperprolactinemia with 

risperidone, weight gain with olanzapine and severe 
sedation and hypotension with quetiapine). Due to these 
adverse effects the compliance was poor and the para-
noid symptoms persist. The PGx–CNS analysis gave 
information that other antipsychotics like aripiprazole 
and haloperidol could possibly be more suitable regard-
ing her ADEs. The HTR2C gene (rs1414334, CG) and 
the MC4R gene (rs17782313, CT) are correlated with an 
increased risk of developing metabolic syndrome and 
weight gain in this patient. In line with the PGx–CNS 
results, the patient subsequently received a treatment 
with haloperidol (10  mg/day) and aripiprazole (15  mg/
day) and after 4 weeks, responded well. Psychotic symp-
toms were decreased and the patient felt relief with 
enhanced functional levels. No serious adverse effects 
have been reported.

Case c: mixed anxiety and depressive disorder
The third case is a 56-year- old Caucasian female with a 
medical history of mixed anxiety and depressive disor-
der (ICD-10-CM Code F41.2). She has never reached a 
remission state with several antidepressant treatments 
(monotherapy and combinations). Due to adverse effects 
in the first days of treatment she reported discontinua-
tion for some antidepressants and especially for selective 
serotonin reuptake inhibitors (SSRIs). Residual symp-
toms like anhedonia, concentration difficulties and anxi-
ety still persist. The PGx–CNS analysis gave information 
regarding the use of psychotropic medications in this 
patient. The CYP2C19 gene (rs4244285, AG; rs28399504, 
AA and rs12248560, CT) is correlated with possibly slow 
metabolizing activity for antidepressants like citalopram 
and escitalopram. The FKBP5 gene (rs4713916, GG) is 
correlated with possibly lower response rates in many 
antidepressants like fluoxetine, paroxetine and sertraline 
in this patient. In line with the PGx–CNS results, the 
patient subsequently received a treatment with dulox-
etine (60  mg/day) and after 4  weeks, responded well. 
Depression and anxiety symptoms were decreased and 
the patient felt better. No serious adverse effects have 
been reported.

Case d: recurrent depression
The fourth case is a 49-year- old Caucasian male 
with a medical history of recurrent depression (ICD-
10-CM Code F33.2)6 The main issue in this patient was 
remission after many years of antidepressants treat-
ments with moderate results. The PGx–CNS analy-
sis gave interesting information regarding the use of 

5  Medical classification as listed by WHO under the range—Mental, Behav-
ioral and Neurodevelopmental disorders.

6  Medical classification as listed by WHO under the range—Mental, Behavio-
ral and Neurodevelopmental disorders.

4  Medical classification as listed by WHO under the range—Mental, Behavio-
ral and Neurodevelopmental disorders.
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psychotropic medications in this patient. The CYP2C19 
gene (rs4244285, AG; rs4986893, GG; rs28399504 AA 
and rs12248560, CC) is correlated with possibly slow 
metabolizing activity for citalopram, escitalopram, ser-
traline, amitriptyline and clomipramine. The CYP2D6 
gene (rs3892097, CT and rs1065852, AG) is possibly cor-
related with a slow clearance (and a high possibility of 
adverse effects) for paroxetine and mirtazapine. On the 
other hand, the FKBP5 gene (rs4713916, AA) is possibly 
correlated with good response rates for antidepressants 
like fluoxetine and venlafaxine in this patient. In line with 
the PGx-CNS results, the patient subsequently received 
a treatment with fluoxetine (20  mg/day) and duloxetine 
(60 mg/day) and after 4 weeks, responded well. Depres-
sion symptoms decreased and the patient felt better. No 
serious adverse effects have been reported.

Discussion
We introduced a pharmacogenetic panel (iDNA Genom-
ics-PGx–CNS or PGx–CNS), consisting of 24 SNPs on 
13 genes that can be used to optimize the selection of 
the treatment and support medical decisions for diseases 
of the CNS, by providing individualized pharmacoge-
netic information about the response, the efficacy of the 
treatment and the ADEs of 28 drugs. Patients’ genotyp-
ing results are interpreted into pharmacogenetic asso-
ciations with phenotypic impacts of clinical interest, and 
are presented in the form of reports describing clinical 
guidelines in drug selection and dosage. Importantly, the 
PGx information of the presented panel of 24 variants 
is based on curated information from knowledge bases, 
such as PharmGKB. Targets with adequate evidence were 
exclusively selected to be included in the pharmacoge-
netic panel. It is noted that the analysis of CYP2D6 copy 
number variations (CNVs), which is needed to properly 
determine patients’ phenotype and the choice of the cor-
rect dose of drugs affected by CYP2D6 in normal clini-
cal practice [47], was not investigated in this study as 
such an analysis requires different experimental settings 
and approaches such as Next Generation Sequencing or 
long range PCR [48]. More specifically, previous research 
has shown that 12.6% of the general US population have 
CNVs in the CYP2D6 gene, with certain potential quan-
titative, rather qualitative interpretative consequences, as 
compared to the activity of the duplicated allele. This is 
indicated in cases where a duplication of a normal allele 
or an allele of increased activity, may lead to an overall 
increased metabolising activity [49]. In addition, with 
respect to Carbamazepine (CBZ) this study focuses 
on EPHX1 and SCN1A genes, but does not test PGx 
polymorphisms on the HLA gene (HLA-A and HLA-B 
alleles), associated with increased risk of CBZ-induced 
hypersensitivity syndromes, with diverse distribution in 

different populations [50]. Patients who test positive for 
HLA-A*31:01 can be prescribed alternative anti-epileptic 
drug therapy, such as lamotrigine, which has not been 
associated with hypersensitivity in HLA-A*31:01 car-
riers, while in patients positive for HLA-A*31:01 who 
still require CBZ therapy, PGx testing may still help alert 
clinicians to monitor these patients more closely [51]. 
Overall, the proposed PGx–CNS analysis can be used 
by psychiatrists and neurologists as a decision support 
evidence-based test, for the treatment of CNS diseases. 
It is provided as a service by the iDNA Genomics Private 
Company.

Our results show the validity of the test in respect to 
the genotypic analysis and the clinical pharmacogenetic 
interpretation. The SNP TaqMan Real-time PCR method 
is shown as a rapid ideal method to perform genotyp-
ing variant determination. It is a state-of-the-art robust, 
highly reproducible approach for determining known 
variations in the DNA, by employing a set of 2 primers 
and 2 probes (fluorophores FAM or VIC), selectively and 
interchangeably hybridizing with the DNA sequence, 
depending on the presence or absence of the variation. 
The raw data also contain real time measurements of 
the amplification product(s). All the genotyping results 
were based on high amplification efficiencies. However, 
in comparison to the mean Ct for most of the targets 
(around 25), the assay C_32407232_50, in certain samples 
had a Ct of 35. This indicates that it had a quantitatively 
(but not qualitatively) decreased efficiency in hybridis-
ing, resulting to a lower Ct. This is a rare event probably 
due to amplification interference caused by SNPs occur-
ring on the hybridizing sequences of the primers or the 
probes, which may well vary on populations [52]. In cases 
the interference is high, it can be avoided by employing 
alternative assays (primers and probes) targeting the vari-
ation. Allele drop-out due to neighbouring SNPs, may 
conceivably occur in any assay amplifying relatively short 
PCR products and is not limited to TaqMan technology 
[52]. Yet, this quantitative discrepancy on the Ct value 
reflects on the quantitative rather the qualitative out-
come and does not alter the final result.

The genotyping results from 501 patients were used in 
a statistical analysis. To our knowledge, it is the first time 
the selected PGx variants are analysed together in the 
frame of a single panel, on samples derived from South-
eastern European patients. Their frequencies were com-
pared to three populations, aiming to evaluate the overall 
methodology and robustness of the results. As expected, 
the genotyping variation frequencies exhibit a close simi-
larity to European populations, compared to Chinese and 
African populations. The cohort of 501 patients with dif-
ferent neurological or/and psychiatric conditions, repre-
sents a selected neurological or psychiatric patient group, 
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which may present variations compared to randomised 
SEC populations. It would be of interest to compare the 
obtained results with genomic data from randomised 
Greek and SEC populations, to address whether the fre-
quencies identified here, are linked to neurological or/and 
psychiatric conditions. For example, results indicate that 
40% to 60% of the patients carry at least one CYP gene 
with an altered metabolising activity, but it is not known 
whether these frequencies are constitutively linked to 
predisposition. However, as expected, the occurrences of 
the targeted polymorphisms in the patient-derived sam-
ples, are closer to the European population, compared 
to Asian or African populations, thus validating the fol-
lowed methodology (Fig.  2). This is in line with studies 
using microarray analyses indicating a close relation-
ship between European and south European populations 
[53]. As a result, these findings confirm the validity of 
the employed analysis method. Interestingly, the present 
study’s nonlinear PCA on the 501 samples showed dis-
tinctive variation among four groups of individuals, cor-
responding to different correlations among gene variants 
(Fig. 2a; Additional file 5). One of the observed patterns 
involved the frequent co-occurrence of the rs17782313 
and rs489693 variants on the MC4R gene, implying that 
targeting one of these variants in some individuals may 
sufficiently address the clinically interesting pharmaco-
genetic associations of the MC4R gene. In some samples, 
variations on MC4R gene (rs17782313, rs489693) tended 
to co-occur with CYP2D6*4,*10 (rs3892097, rs1065852), 
but with no variations on rs7668258 (UGT2B7 gene). In 
fact, variation on rs7668258 (UGT2B7 gene) tends to co-
occur with CYP2D6*41 (rs28371725 variation). These 
results point towards a higher relevance of combined 
CYP2D6*4,*10 and MC4R variations as well as a correla-
tion of CYP2D6*41 with UGT2B7 variations. This is in 
line with previous data showing a general combined co-
occurence of CYP2D6 / UGT2B7 variability [54].

In addition to the presented statistical findings on 
the variants, the selected gene-drug associations, of the 
PGx–CNS panel, were used to study the relevance of 
the presented drugs in the population (ie frequency of 
enhanced PGx associations), aiming to address their high 
translational value. This task required the interpretation 
of the genotypic results to PGx associations according to 
the literature, and importantly, the combination of the 
PGx results, by an algorithm accounting the EL and PG 
scores. Indeed, depending on each drug and according 
to the described algorithm, the PGx results derive from 
a combination of PGx associations of subsets of the 24 
polymorphisms. Each drug presents a different num-
ber of associations of clinical value. As an example, the 
PGx–CNS panel includes the analysis of 6 variants corre-
sponding to five genes (CYP2D6, ANKK1/DRD2, DRD2, 

HTR2C, MC4R) for risperidone and one variant (FKBP5 
gene), for fluoxetine (Additional file 1). The combination 
algorithm is based on a score-ranking method whereby 
the EL and PG scores determine the final interpretation 
to provide with an overall conclusion about the pharma-
cogenetic compatibility of the patient with the each drug 
(Additional file 1). It becomes clear that including addi-
tional markers in the panel (clinically useful PGx associa-
tions) of poor EL or PG scores according to the current 
literature, would not alter the conclusive drug-specific 
interpretation as the resulted scores would be relatively 
low. Thereof, the selected 24 markers of the PGx–CNS 
panel adequately support a conclusive PGx reporting for 
the clinically valuable PGx analysis of the targeted drugs.

The described drug relevance in the population, high-
lights a subset of drugs, which are more commonly asso-
ciated with polymorphisms denoting an altered activity 
linked to PGx information (ie metabolization activ-
ity, Fig. 4). The metabolisation activity of three genes of 
the P450 (relevant to the targeted drugs), showed that 
61% of the samples were rapid/extensive metabolisers 
for CYP2C9, 33% were intermediate, and 6% were poor 
metabolisers (Fig.  3b). These results are consistent with 
previous findings on the distribution of metabolising 
activity based on the variant occurrences in Ashkenazi 
Jewish (Mediterranean), Caucasian and other popula-
tions [55, 56]. For CYP2C19, the metabolising activities 
were 40% (extensive), 25% (intermediate), 2% (poor), 
and 33% (ultra rapid) metabolisers. These results are in 
line with previous findings on the distribution of vari-
ants in randomised American and in Russian patients 
[57, 58], (Fig.  3c). For CYPD6, the values were 62% 
(extensive), 16% (intermediate) and 22% (poor). These 
results are consistent with previous findings on the dis-
tribution of single copy variants in the United States [59]. 
These results indicate a high percentage of occurrences 
of individuals carrying variants associated with poor or 
intermediate metabolization activity of the cytochromes 
(Fig. 3), urging the implementation of similar PGx testing 
in additional drugs employed for the treatment of other 
diseases [60–62]. Accordingly, > 70% of the individuals 
(patients) exhibited intermediate or enhanced gene-drug 
interactions for a range of CNS drugs (escitalopram, cit-
alopram, fluoxetine, carbamazepine and lamotrigine; clo-
zapine and olanzapine) (Fig. 4b, c), urging the application 
of the PGx–CNS test for the treatment of psychotic and 
neurological diseases. However, these analyses reflect 
bio-statistical observations based on the frequencies of 
the involved polymorphisms on a cohort of patients with 
different neurological or/and psychiatric conditions, and 
thus it may not independently signify therapeutic medi-
cal choices. It should be highlighted that the selection 
of the therapeutic strategy derives from multifaceted 
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medical decisions, applied by the physician, who takes 
into consideration various genetic, clinical and environ-
mental factors, which may influence drug efficacy. The 
disease status and the disease itself may influence the fate 
of the drug in vivo, by altering the phenotype of a certain 
genetic trait. Interestingly, from the genetic viewpoint 
the sex factor did not show a high disparity in the occur-
rence of the variants (higher than 10%, Additional file 4). 
However, it is noted that the data for valproic acid (VPA) 
and phenytoin exhibited a deviation of 5.4% between 
Males and Female individuals, corresponding to a higher 
frequency of minimum gene-drug interactions in Males 
(Additional file  4: the sex factor). This is in line with 
studies showing that Age and Sex factors influence VPA 
serum concentrations, and older female patients gener-
ally required 30–50% lower dosing of VPA compared 
to younger males [33]. Such deviations in the PGx out-
come may indeed be influenced by the hormonal status, 
the metabolism and the age of the patients. Finally, the 
described clinical cases randomly selected from the pool 
of the 501 samples by the clinicians, show that patients 
have benefited from a PGx–CNS—guided treatment, by 
increasing their response and eliminating the ADEs. In 
conclusion, implementation of PGx analysis on the pre-
sented 28 CNS drugs offers an additive knowledge in a 
patient-based personalized treatment.

Conclusions
In conclusion, this work presents a pioneer PGx panel 
consisting of 24 targets, adequately identifying the PGx 
profile of individuals (patients) for 28 CNS drugs. The 
results from 501 CNS patients overall show that this 
pharmacogenetic analysis as a companion diagnostic 
assay preceding the therapeutic medical decision, is sta-
tistically relevant and of high importance for clinical 
practices. These results indicate that the described panel 
can be used as a standardised tool for testing PGx genes 
and alleles across clinical laboratories, providing recom-
mendations as a reference guide for therapeutic selection 
for CNS conditions.

Abbreviations
ADE: Adverse drug effect; CBZ: Carbamazepine; CEU: Utah Residents (CEPH) 
with Northern and Western European Ancestry; CEPH: Clinical epidemiology 
and population health; CHB: Chinese han in Beijing; CNS: Central nervous sys-
tem; CNV: Copy number variation; FDA: US Food & Drug Administration; PCA: 
Principal component analysis; PGx: Pharmacogenomics; SEC: Southeastern 
European Caucasian; SSRIs: Selective serotonin reuptake inhibitors; SNP: Single 
nucleotide polymorphism; VIP: Very important pharmacogene; VPA: Valproic 
acid; YRI: Yoruba in Ibadan.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​021-​02816-3.

Additional file 1: Drug-variant associations of the PGx–CNS panel. 
The PGx–CNS panel includes 28 CNS drugs and to 24 single nucleotide 
polymorphisms (SNPs). The table summarizes the SNPs and the genes 
associated to each of the 28 drugs. The corresponding probe IDs and 
the Evidence Levels (EL) are mentioned. The Level of evidence (EL) of 
each PGx variant-drug association, adequate for clinical use, in line with 
PharmGKB. The PGx-CNS panel includes pharmacogenetics associations of 
clinical significance. Each association has a variable level of evidence (EL), 
as derived by literature mining, in line with the rating system of "Strength 
of Evidence” by the PharmGKB [10]. In addition, the associations annotated 
by the FDA are noted (Actionable: The label may contain information 
about changes in efficacy, dosage, metabolism or toxicity due to gene/
protein/chromosomal variants or phenotypes (e.g. "poor metabolizers"). 
Or the label may mention contraindication of the drug in a particular sub-
set of patients with particular variants/genotypes/phenotypes. However, 
the label does not require or recommend gene, protein or chromosomal 
testing; Informative PGx: The label contains information stating that 
particular gene/protein/chromosomal variants or metabolizer phenotypes 
do not affect a drug’s efficacy, dosage, metabolism or toxicity, or its effect 
is not considered as “clinically” significant, or it does not currently meet the 
requirements to be assigned as “Actionable PGx”, No recommendation: 
The PGx association is not mentioned in the FDA’s Table of Pharmacog-
enomic Biomarkers in Drug Labels).

Additional file 2: Functional roles of the genes associated with the 
PGx–CNS panel. The PGx–CNS panel includes 13 genes that were selected 
for their valuable PGx association with the targeted drugs. The table 
summarizes the functional roles of their encoded proteins, ranging from 
metabolization to cell signalling and actionable mechanisms [63–90].

Additional file 3: Genotypic results (tab1), SNP frequencies (tab2) and 
comparative population analysis on the occurrences of 24 variants identi-
fied on 501 patients (PGx–CNS) and three different populations (CEU, YRI, 
CHB) (tab3).

Additional file 4: Categorization of identified PGx associations of 28 
drugs with 24 SNPs, on 501 patients as minimum (homozygotic, no poly-
morphism); intermediate (heterozygotic polymorphism) and enhanced 
(homozygotic polymorphism), including the Age and the sex factors.

Additional file 5: Statistics of the nonlinear principal component analysis 
(PCA) involving 24 variables (gene variants) and all 501 samples of the 
PGx–CNS panel.

Additional file 6: Categorization of identified PGx associations denoting 
altered metabolisation efficiency of CYP2C9, CYP2C19 and CYP2D6, on 
501 patients, denoted as minimum (homozygotic, no polymorphism); 
intermediate (heterozygotic polymorphism) and enhanced (homozygotic 
polymorphism), including the Age and the sex factors.

Acknowledgements
We thank iDNA Genomics Private Company for providing anonymized and 
de-identified patient data and for covering the implementation and publica-
tion fees.

We thank the medical doctors that collaborated with us, for their valuable 
comments on the clinical aspects and the central nervous system. Notably 
we thank the following Neurologists, MD: Prof. Magdalini Tsolaki, Assc. Prof. 
Stergios-Stylianos Gatzonis, Soufleri Lambrini, Tsangli Valentina, Sourgouni 
Sofia; and the following Psychiatrists, MD: Gouvas Nikolaos, Anagnostara Chry-
soula, Stergiou Theofilos, Gkikas Paschalis, Dimitriadis George, Ananadiadis 
Konstantinos, Evangelou Mary, Savvidis Omiros, Zittis Marios, Salesiotis Ioannis, 
Kounenou Despoina, Adrakta Xilouri Theodora.

Authors’ contributions
KK (corresponding author) conceptualised, designed, analysed the experi-
ments and wrote the manuscript. EN and KK run the experiments and 
analysed the raw data. EB and PM designed and performed the bioinformatic 
analyses and the reporting of the iDNA Genomics PGx-CNS test. ND and 
MP reviewed the pharmacogenetic associations and the clinical interpreta-
tions. DR wrote the clinical cases section. FAK performed statistical analyses 
(p-values, PCA). All authors reviewed and contributed to the work and to the 
preparation of the manuscript.

https://doi.org/10.1186/s12967-021-02816-3
https://doi.org/10.1186/s12967-021-02816-3


Page 15 of 17Bothos et al. J Transl Med          (2021) 19:151 	

Funding
This work has been fully funded by iDNA Genomics Private company.

Availability of data and materials
The data that support the findings of this study are available from iDNA 
Genomics but restrictions apply to the availability of these data, which were 
used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and 
with permission of iDNA Genomics.

Declarations

Ethics approval and consent to participate
All patients have consent to anonymously participate in the analysis of the 
sample and the genotypic results. They consent by ordering the genetic test 
and they are informed by their physician. All of them have signed an informed 
consent form for the use of their genetic data after anonymization and de-
identification of their samples.

Consent for publication
Not applicable.

Competing interests
Authors KK, KK and EN are affiliated to iDNA Genomics Private company. 
Authors not affiliated to iDNA Genomics Private company, declare no compet-
ing interests.

Study limitations
As discussed in the manuscript, the analysis of CYP2D6 copy number varia-
tions (CNVs) and PGx polymorphisms on the HLA gene, are not investigated 
in this study.

Author details
1 HybridStat Predictive Analytics, Athens, Greece. 2 Institute of Communica-
tions and Computer Systems, National Technical University of Athens, Athens, 
Greece. 3 iDNA Genomics Private Company, Evrota 25, Kifissia,  145 64 Athens, 
Greece. 4 Department of Psychiatry,  Army Hospital (NIMTS), 417 Veterans, 
115 21 Athens, Greece. 5 Research Group of Clinical Pharmacology and Phar-
macogenomics, Faculty of Pharmacy, School of Health Sciences, National 
and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, 
Greece. 6 Paleoanthropology, Senckenberg Centre for Human Evolution 
and Palaeoenvironment, Department of Geosciences, University of Tübin-
gen, Tübingen, Germany. 7 Institute for Fundamental Biomedical Research, 
Biomedical Sciences Research Center ‘Alexander Fleming’, 34 Fleming str, 
16672 Athens, Vari, Greece. 

Received: 12 January 2021   Accepted: 2 April 2021

References
	1.	 Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: 

development, science, and translation. Annu Rev Genomics Hum Genet. 
2006;7:223–45.

	2.	 Oros MM. Pharmacogenetic criteria of drug-resistant epilepsy. Lik Sprava. 
2012;8:71–4.

	3.	 Bousman CA, Hopwood M. Commercial pharmacogenetic-based 
decision-support tools in psychiatry. Lancet Psychiatry. 2016;3:585–90.

	4.	 Bousman C, Allen J, Eyre HA. Pharmacogenetic tests in psychiatry. Am J 
Psychiatry. 2018;175:189.

	5.	 Kostyuk GP, Zakharova NV, Reznik AM, Surkova EI, Ilinsky VV. Perspectives 
of the use of pharmacogenetic tests in neurology and psychiatry. Zh 
Nevrol Psikhiatr Im S S Korsakova. 2019;119:131–5.

	6.	 Papasavva M, Katsarou MS, Vikelis M, Mitropoulou E, Dermitzakis EV, 
Papakonstantinou S, Arvaniti C, Mitsikostas DD, Gozes I, Tsatsakis AM, 
Drakoulis N. Analysis of HCRTR2, GNB3, and ADH4 Gene polymorphisms 
in a Southeastern European Caucasian cluster headache population. J 
Mol Neurosci. 2020;70:467–74.

	7.	 Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation 
consortium of the pharmacogenomics research network. Clin Pharmacol 
Ther. 2011;89:464–7.

	8.	 Verbeurgt P, Mamiya T, Oesterheld J. How common are drug and gene 
interactions? Prevalence in a sample of 1143 patients with CYP2C9, 
CYP2C19 and CYP2D6 genotyping. Pharmacogenomics. 2014;15:655–65.

	9.	 Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 
2015;526:343–50.

	10.	 Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn 
CF, Altman RB, Klein TE. Pharmacogenomics knowledge for personalized 
medicine. Clin Pharmacol Ther. 2012;92:414–7.

	11.	 Nassan M, Nicholson WT, Elliott MA, Rohrer Vitek CR, Black JL, Frye MA. 
Pharmacokinetic pharmacogenetic prescribing guidelines for antide-
pressants: a template for psychiatric precision medicine. Mayo Clin Proc. 
2016;91:897–907.

	12.	 Saldivar JS, Taylor D, Sugarman EA, Cullors A, Garces JA, Oades K, Centeno 
J. Initial assessment of the benefits of implementing pharmacogenetics 
into the medical management of patients in a long-term care facility. 
Pharmgenomics Pers Med. 2016;9:1–6.

	13.	 Bradley P, Shiekh M, Mehra V, Vrbicky K, Layle S, Olson MC, Maciel A, 
Cullors A, Garces JA, Lukowiak AA. Improved efficacy with targeted phar-
macogenetic-guided treatment of patients with depression and anxiety: 
a randomized clinical trial demonstrating clinical utility. J Psychiatr Res. 
2018;96:100–7.

	14.	 Butler BM, Kazan IC, Kumar A, Ozkan SB. Coevolving residues inform pro-
tein dynamics profiles and disease susceptibility of nSNVs. PLoS Comput 
Biol. 2018;14:e1006626.

	15.	 Franco-Martin MA, Sans F, Garcia-Berrocal B, Blanco C, Llanes-Alvarez C, 
Isidoro-Garcia M. Usefulness of pharmacogenetic analysis in psychi-
atric clinical practice: a case report. Clin Psychopharmacol Neurosci. 
2018;16:349–57.

	16.	 Maciel A, Cullors A, Lukowiak AA, Garces J. Estimating cost savings of 
pharmacogenetic testing for depression in real-world clinical settings. 
Neuropsychiatr Dis Treat. 2018;14:225–30.

	17.	 Volpi S, Bult CJ, Chisholm RL, Deverka PA, Ginsburg GS, Jacob HJ, Kasapi 
M, McLeod HL, Roden DM, Williams MS, et al. Research directions in 
the clinical implementation of pharmacogenomics: an overview of US 
programs and projects. Clin Pharmacol Ther. 2018;103:778–86.

	18.	 Kim WY, Kim HS, Oh M, Shin JG. Survey of physicians’ views on the clinical 
implementation of pharmacogenomics-based personalized therapy. 
Transl Clin Pharmacol. 2020;28:34–42.

	19.	 McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE. From 
pharmacogenomic knowledge acquisition to clinical applications: the 
PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark 
Med. 2011;5:795–806.

	20.	 Cariaso M, Lennon G. SNPedia: a wiki supporting personal 
genome annotation, interpretation and analysis. Nucleic Acids Res. 
2012;40:D1308-1312.

	21.	 Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, 
Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the 
DrugBank database for 2018. Nucleic Acids Res. 2018;46:1074–82.

	22.	 Maggo SDS, Sycamore KLV, Miller AL, Kennedy MA. The Three Ps: Psychia-
try, Pharmacy, and Pharmacogenomics, a brief report from New Zealand. 
Front Psychiatry. 2019;10:690.

	23.	 Ludwig PE, Reddy V, Varacallo M. Neuroanatomy, central nervous system 
(CNS). Treasure Island: In StatPearls; 2020.

	24.	 Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS 
neurodegenerative diseases. Immunology. 2018;154:204–19.

	25.	 MacQueen G, Born L, Steiner M. The selective serotonin reuptake inhibi-
tor sertraline: its profile and use in psychiatric disorders. CNS Drug Rev. 
2001;7:1–24.

	26.	 Keks N, Hope J, Keogh S. Switching and stopping antidepressants. Aust 
Prescr. 2016;39:76–83.

	27.	 Petrovic J, Pesic V, Lauschke VM. Frequencies of clinically important 
CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 
2020;28:88–94.

	28.	 Chowdhury NI, Tiwari AK, Souza RP, Zai CC, Shaikh SA, Chen S, Liu F, 
Lieberman JA, Meltzer HY, Malhotra AK, et al. Genetic association study 
between antipsychotic-induced weight gain and the melanocortin-4 
receptor gene. Pharmacogenomics J. 2013;13:272–9.



Page 16 of 17Bothos et al. J Transl Med          (2021) 19:151 

	29.	 Czerwensky F, Leucht S, Steimer W. Association of the common MC4R 
rs17782313 polymorphism with antipsychotic-related weight gain. J Clin 
Psychopharmacol. 2013;33:74–9.

	30.	 Liou YH, Lin CT, Wu YJ, Wu LS. The high prevalence of the poor and 
ultrarapid metabolite alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A4, and 
CYP3A5 in Taiwanese population. J Hum Genet. 2006;51:857.

	31.	 Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence 
of cytochrome P450 polymorphisms on drug therapies: pharmaco-
genetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 
2007;116:496–526.

	32.	 Ramasamy K, Narayan SK, Shewade DG, Chandrasekaran A. Influence 
of CYP2C9 genetic polymorphism and undernourishment on plasma-
free phenytoin concentrations in epileptic patients. Ther Drug Monit. 
2010;32:762–6.

	33.	 Smith RL, Haslemo T, Refsum H, Molden E. Impact of age, gender and 
CYP2C9/2C19 genotypes on dose-adjusted steady–state serum concen-
trations of valproic acid-a large-scale study based on naturalistic thera-
peutic drug monitoring data. Eur J Clin Pharmacol. 2016;72:1099–104.

	34.	 International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen 
L, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al. Integrating com-
mon and rare genetic variation in diverse human populations. Nature. 
2010;467:52–8.

	35.	 Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of 
CYP2D6 phenotype from genotype across world populations. Genet 
Med. 2017;19:69–76.

	36.	 McDonald JH. Handbook of biological statistics. Baltimore: Sparky House 
Publishing; 2014.

	37.	 Cohen J. Statistical power analysis for the behavioral sciences. New York: 
Routledge; 1988.

	38.	 George P, Moore DSM. By Dan Yates-Practice of Statistics: Advanced 
Placement. New York: W H Freeman & Co; 1999.

	39.	 Holm S. A simple sequentially rejective multiple test procedure. Scand J 
Stat. 1979;6:65–70.

	40.	 Meulman JJ, Van der Kooij AJ, Babinec A. New features of categorical 
principal components analysis for complicated data sets, including data 
mining. In Classification, automation, and new media 2002 pp. 207-217. 
Springer, Berlin, Heidelberg

	41.	 Linting M, Meulman JJ, Groenen PJ, van der Koojj AJ. Nonlinear principal 
components analysis: introduction and application. Psychol Methods. 
2007;12:336–58.

	42.	 Song Y, Westerhuis JA, Aben N, Michaut M, Wessels LFA, Smilde AK. 
Principal component analysis of binary genomics data. Brief Bioinform. 
2019;20:317–29.

	43.	 Costa PS, Santos NC, Cunha P, Cotter J, Sousa N. The use of multiple 
correspondence analysis to explore associations between categories of 
qualitative variables in healthy ageing. J Aging Res. 2013. https://​doi.​org/​
10.​1155/​2013/​302163.

	44.	 Cattell RB. The scree test for the number of factors. Multivar Behav Res. 
1966. https://​doi.​org/​10.​1207/​s1532​7906m​br0102_​10.

	45.	 Yoon DY, Lee S, Ban MS, Jang IJ, Lee S. Pharmacogenomic information 
from CPIC and DPWG guidelines and its application on drug labels. Transl 
Clin Pharmacol. 2020;28:189–98.

	46.	 Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, Leeder 
JS, Graham RL, Chiulli DL, Lerena A, et al. Clinical Pharmacogenetics 
Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 
genotypes and dosing of selective serotonin reuptake inhibitors. Clin 
Pharmacol Ther. 2015;98:127–34.

	47.	 Beoris M, Amos Wilson J, Garces JA, Lukowiak AA. CYP2D6 copy 
number distribution in the US population. Pharmacogenet Genomics. 
2016;26:96–9.

	48.	 Kerkhof J, Schenkel LC, Reilly J, McRobbie S, Aref-Eshghi E, Stuart A, Rupar 
CA, Adams P, Hegele RA, Lin H, et al. Clinical validation of copy number 
variant detection from targeted next-generation sequencing panels. J 
Mol Diagn. 2017;19:905–20.

	49.	 Jarvis JP, Peter AP, Shaman JA. Consequences of CYP2D6 copy-number 
variation for pharmacogenomics in psychiatry. Front Psychiatry. 
2019;10:432.

	50.	 Satapornpong P, Jinda P, Jantararoungtong T, Koomdee N, Chaichan C, 
Pratoomwun J, Na Nakorn C, Aekplakorn W, Wilantho A, Ngamphiw C, 
et al. Genetic diversity of HLA class I and class II alleles in Thai populations: 

contribution to genotype-guided therapeutics. Front Pharmacol. 
2020;11:78.

	51.	 McCormack M, Urban TJ, Shianna KV, Walley N, Pandolfo M, Depondt C, 
Chaila E, O’Conner GD, Kasperaviciute D, Radtke RA, et al. Genome-wide 
mapping for clinically relevant predictors of lamotrigine- and phenytoin-
induced hypersensitivity reactions. Pharmacogenomics. 2012;13:399–405.

	52.	 Gaedigk A, Freeman N, Hartshorne T, Riffel AK, Irwin D, Bishop JR, Stein 
MA, Newcorn JH, Jaime LK, Cherner M, Leeder JS. SNP genotyping 
using TaqMan technology: the CYP2D6*17 assay conundrum. Sci Rep. 
2015;5:9257.

	53.	 Stamatoyannopoulos G, Bose A, Teodosiadis A, Tsetsos F, Plantinga 
A, Psatha N, Zogas N, Yannaki E, Zalloua P, Kidd KK, et al. Genetics of 
the peloponnesean populations and the theory of extinction of the 
medieval peloponnesean Greeks. Eur J Hum Genet. 2017;25:637–45.

	54.	 Wendt FR, Novroski NMM, Rahikainen AL, Sajantila A, Budowle B. A 
pathway-driven predictive model of tramadol pharmacogenetics. Eur J 
Hum Genet. 2019;27:1143–56.

	55.	 Scott SA, Edelmann L, Kornreich R, Erazo M, Desnick RJ. CYP2C9, 
CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish popu-
lation. Pharmacogenomics. 2007;8:721–30.

	56.	 Pathare AV, Al Zadjali S, Misquith R, Alkindi SS, Panjwani V, Lapoume-
roulie C, Pravin S, Paldi A, Krishnamoorthy R. Warfarin pharmacoge-
netics: polymorphisms of the CYP2C9, CYP4F2, and VKORC1 loci in a 
genetically admixed Omani population. Hum Biol. 2012;84:67–77.

	57.	 Cavallari LH, Jeong H, Bress A. Role of cytochrome P450 genotype in 
the steps toward personalized drug therapy. Pharmgenomics Pers 
Med. 2011;4:123–36.

	58.	 Sychev DA, Denisenko NP, Sizova ZM, Grachev AV, Velikolug KA. The 
frequency of CYP2C19 genetic polymorphisms in Russian patients with 
peptic ulcers treated with proton pump inhibitors. Pharmgenomics 
Pers Med. 2015;8:111–4.

	59.	 Del Tredici AL, Malhotra A, Dedek M, Espin F, Roach D, Zhu GD, Voland 
J, Moreno TA. Frequency of CYP2D6 alleles including structural variants 
in the United States. Front Pharmacol. 2018;9:305.

	60.	 Mukerjee G, Huston A, Kabakchiev B, Piquette-Miller M, van Schaik R, 
Dorfman R. User considerations in assessing pharmacogenomic tests 
and their clinical support tools. NPJ Genom Med. 2018;3:26.

	61.	 Bank PCD, Swen JJ, Guchelaar HJ. Estimated nationwide impact of 
implementing a preemptive pharmacogenetic panel approach to 
guide drug prescribing in primary care in The Netherlands. BMC Med. 
2019;17:110.

	62.	 Krebs K, Milani L. Translating pharmacogenomics into clinical decisions: 
do not let the perfect be the enemy of the good. Hum Genomics. 
2019;13:39.

	63.	 Ritter JK, Sheen YY, Owens IS. Cloning and expression of human liver 
UDP-glucuronosyltransferase in COS-1 cells. 3,4-catechol estrogens 
and estriol as primary substrates. J Biol Chem. 1990;265:7900–6.

	64.	 Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA. Cloning 
and expression of complementary DNAs for multiple members of the 
human cytochrome P450IIC subfamily. Biochemistry. 1991;30:3247–55.

	65.	 Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, 
Remington SJ, Silman I, Schrag J, et al. The alpha/beta hydrolase fold. 
Protein Eng. 1992;5:197–211.

	66.	 Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes 
morphine glucuronidation. Drug Metab Dispos. 1997;25:1–4.

	67.	 Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melano-
cortinergic neurons in feeding and the agouti obesity syndrome. 
Nature. 1997;385:165–8.

	68.	 Duaux E, Gorwood P, Griffon N, Bourdel MC, Sautel F, Sokoloff P, 
Schwartz JC, Ades J, Loo H, Poirier MF. Homozygosity at the dopamine 
D3 receptor gene is associated with opiate dependence. Mol Psychia-
try. 1998;3:333–6.

	69.	 Mackenzie P, Little JM, Radominska-Pandya A. Glucosidation of hyode-
oxycholic acid by UDP-glucuronosyltransferase 2B7. Biochem Pharmacol. 
2003;65:417–21.

	70.	 Neville MJ, Johnstone EC, Walton RT. Identification and characterization 
of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome 
band 11q231. Hum Mutat. 2004;23:540–5.

	71.	 Alex KD, Yavanian GJ, McFarlane HG, Pluto CP, Pehek EA. Modulation of 
dopamine release by striatal 5-HT2C receptors. Synapse. 2005;55:242–51.

https://doi.org/10.1155/2013/302163
https://doi.org/10.1155/2013/302163
https://doi.org/10.1207/s15327906mbr0102_10


Page 17 of 17Bothos et al. J Transl Med          (2021) 19:151 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	72.	 Esposito E. Serotonin-dopamine interaction as a focus of novel antide-
pressant drugs. Curr Drug Targets. 2006;7:177–85.

	73.	 Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M. 
Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 
and UGT2B7. Identification of a critical aromatic amino acid residue at 
position 33. FEBS J. 2007;274:1256–64.

	74.	 Xuan J, Zhao X, He G, Yu L, Wang L, Tang W, Li X, Gu N, Feng G, Xing Q, He 
L. Effects of the dopamine D3 receptor (DRD3) gene polymorphisms on 
risperidone response: a pharmacogenetic study. Neuropsychopharma-
cology. 2008;33:305–11.

	75.	 Coller JK, Christrup LL, Somogyi AA. Role of active metabolites in the use 
of opioids. Eur J Clin Pharmacol. 2009;65:121–39.

	76.	 Lossin C. A catalog of SCN1A variants. Brain Dev. 2009;31:114–30.
	77.	 Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. New insights 

into the structural characteristics and functional relevance of the human 
cytochrome P450 2D6 enzyme. Drug Metab Rev. 2009;41:573–643.

	78.	 Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, 
Altman RB. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 
2010;20:277–81.

	79.	 Li Y, Kuzhikandathil EV. Molecular characterization of individual D3 dopa-
mine receptor-expressing cells isolated from multiple brain regions of a 
novel mouse model. Brain Struct Funct. 2012;217:809–33.

	80.	 Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, 
interethnic differences and clinical importance. Drug Metab Pharmacoki-
net. 2012;27:55–67.

	81.	 Uppugunduri CR, Daali Y, Desmeules J, Dayer P, Krajinovic M, Ansari M. 
Transcriptional regulation of CYP2C19 and its role in altered enzyme 
activity. Curr Drug Metab. 2012;13:1196–204.

	82.	 Hirota T, Eguchi S, Ieiri I. Impact of genetic polymorphisms in CYP2C9 and 
CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab 
Pharmacokinet. 2013;28:28–37.

	83.	 O’Leary JC 3rd, Zhang B, Koren J 3rd, Blair L, Dickey CA. The role of FKBP5 
in mood disorders: action of FKBP5 on steroid hormone receptors leads 
to questions about its evolutionary importance. CNS Neurol Disord Drug 
Targets. 2013;12:1157–62.

	84.	 Clarke TK, Weiss AR, Ferarro TN, Kampman KM, Dackis CA, Pettinati HM, 
O’Brien CP, Oslin DW, Lohoff FW, Berrettini WH. The dopamine receptor 
D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann Hum 
Genet. 2014;78:33–9.

	85.	 Wang X, Li J, Dong G, Yue J. The endogenous substrates of brain CYP2D. 
Eur J Pharmacol. 2014;724:211–8.

	86.	 Benes FM. Building models for postmortem abnormalities in hippocam-
pus of schizophrenics. Schizophr Res. 2015;167:73–83.

	87.	 Vaclavikova R, Hughes DJ, Soucek P. Microsomal epoxide hydrolase 1 
(EPHX1): Gene, structure, function, and role in human disease. Gene. 
2015;571:1–8.

	88.	 Kluckova D, Kolnikova M, Lacinova L, Jurkovicova-Tarabova B, Foltan T, 
Demko V, Kadasi L, Ficek A, Soltysova A. A study among the genotype, 
functional alternations, and phenotype of 9 SCN1A mutations in epilepsy 
patients. Sci Rep. 2020;10:10288.

	89.	 Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 
receptor: a neglected participant in Parkinson disease pathogenesis and 
treatment? Ageing Res Rev. 2020;57:100994.

	90.	 Yin J, Chen KM, Clark MJ, Hijazi M, Kumari P, Bai XC, Sunahara RK, Barth P, 
Rosenbaum DM. Structure of a D2 dopamine receptor-G-protein com-
plex in a lipid membrane. Nature. 2020;584:125–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Clinical pharmacogenomics in action: design, assessment and implementation of a novel pharmacogenetic panel supporting drug selection for diseases of the central nervous system (CNS)
	Abstract 
	Background: 
	Materials: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Selection of clinically relevant PGx targets

	Collection of samples—Patients
	Genotyping
	Statistical and bioinformatic analysis
	Results
	Development of the iDNA PGx–CNS panel: Assessment and evaluation of the PGx targets

	Validation samples and patient characteristics
	Genotyping using the SNP TaqMan Real-time PCR method, provides with a quick and robust targeted determination of SNPs
	Relevance of pharmacogenetic associations for CNS drugs: bioinformatic analysis and PGx interpretation
	Clinical evidence
	Case a: pervasive developmental disorder not otherwise specified
	Case b: paranoid schizophrenia
	Case c: mixed anxiety and depressive disorder
	Case d: recurrent depression
	Discussion
	Conclusions
	Acknowledgements
	References




